A Distance Based Regression Model for Prediction with Mixed Data
نویسنده
چکیده
A multiple regression method based on distance analysis and metric scaling is proposed and studied. This method allow us to predict a continuous response variable from several explanatory variables, is compatible with the general linear model and is found to be useful when the predictor variables are both continuous and categorical. Real data examples are given to illustrate the results obtained.
منابع مشابه
TUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION
key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...
متن کاملPredicting the Effects of New Sanctions and Evaluating Fiscal Policies in the Context of a Macroeconomic Model with Mixed-Frequency Data Sampling for the Iranian Economy Under Sanctions
In the Iranian economy, which has experienced various sanctions, it was necessary to anticipate macroeconomic variables when imposing new sanctions. On the other hand, in the context of sanctions, it is possible to make a more accurate assessment of economic policies in order to be able to respond in a timely manner to these shocks and the need for appropriate planning and security against them...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملRegression Modeling for Spherical Data via Non-parametric and Least Square Methods
Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...
متن کاملRegional simulation and landslide risk prediction based on bivariate logistic regression (A case study: Pahne Kola watershed in north of Iran)
This study aims to assess landslide susceptibility in Pahne Kola watershed located in the south of Sari, based on bivariate logistic regression. For this purpose, the distribution map of the area’s landslides was firstly prepared in ArcGIS software. Eight effective factors on landslide event including elevation, slope, slope aspect, rainfall, land use, distance from the road, soil and geology w...
متن کامل